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Abstract—This paper, which is the second in a two-part study, uses a specific boundary-value
problem to illustrate some of the features of the theory discussed in the first part. Here, the
spherically symmetric deformation of a hollow sphere which has a traction-free inner wall and a
prescribed radial displacement J at its outer wall is studied. The analysis is carried out within the
small-strain theory of nonlinear elasticity and the body is assumed to be composed of an elastic
material which is homogeneous and isotropic, and which has a linear response in shear and a tri-
linear response in dilatation.

For a certain range of values of the applied displacement &, the problem has an infinity of
solutions and these describe configurations which involve 4 phase boundary; the strain field is
continuous on either side of the phase boundary but suffers a jump discontinuity across it. A “kinetic
law”, which is a supplementary constitutive law pertaining to particles located on the phase
boundary and relating the driving traction on the phase boundary to its velocity, is then imposed,
leading to a unique response in all quasi-static motions.

As ¢ increases monotonically during a quasi-static motion, the hoop stress at the cavity first
increuases, then decreases discontinuously as the phase boundary emerges from the cavity wall, next
increases slowly (or, for certain special kinetic laws, remains constant) as the phase boundary
propagates outwards, and finally commences to increase at the original rate once the body has been
fully trunsformed.

1. INTRODUCTION

The fracture toughness of certain ceramic composites containing second phase particles
which undergo a stress-induced phase transformation is known to be higher than that of
the brittle ceramic matrix (Garvie er af., 1975; Evans and Cannon, 1986). A number of
recent studies, beginning with the work of McMeeking and Evans (1982) and Budiansky
et al. (1983), have been aimed at providing a continuum mechanical model which can
predict the observed stress intensity factor reduction at a crack-tip in such materials; see
also Lambropoulos (1986}, Amazigo and Budiansky (1987, 1988), Ortiz (1987) and Silling
(1987).

In this paper we examine a much simpler, but related, problem. We consider the
spherically symmetric deformation of a hollow sphere which has a traction-free inner wall
and a prescribed radial displacement § at its outer wall. Here, one expects to observe a
reduction in the stress concentration fuctor at the cavity in the case when the sphere is
composed of a transforming ceramic material as when compared to the case when it is
composed of the ceramic matrix. We obtain a closed form analytical solution to this
problem, and use it to illustrate certain features of boundary-value problems for such
materials.

The analysis here is carricd out within the small-strain theory of nonlinear elasticity,
and utilizes the particular constitutive law proposed by Budiansky er af. (1983) for the
special case of “supercritical transformations™; this constitutive law describes a class of
elastic materials which is homogencous and isotropic, and which has a linear response in
shear and a tri-lincar dilatational response. Certain theoretical issues pertaining to such
materials were examined in Part [ of this study (Abeyaratne and Jiang, 1989).

We show that, for all sufficiently small values of the prescribed displacement J, the
boundary-value problem has a unique solution and that it corresponds to a configuration

T The results reported here were obtained in the course of an investigation supported in part by the U.S.
Office of Naval Research.
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of the body in which the strain field varies continuously (a “fully untransformed con-
ation™); this is also true for all large enough values of & (in which case the body is in
a “fully transformed configuration™). On the other hand, for a certain intermediate range
of values of J the problem has an infinity of solutions and these describe configurations
which involve a phase boundary (“partially transformed configurations™). The strain field
is continuous on either side of the phase boundary but suffers a jump discontinuity across
it ; the displacement field is continuous everywhere.

In view of this massive failure of uniqueness, we are led to conclude that the theory,
as formulated. is deficient. Presumably, this deficiency is constitutive, and moreover, is
intimately related to the presence of a phase boundary. Accordingly, in Section 5 we
supplement the theory with an additional constitutive law (a “kinetic law™") which pertains
(only) to particles located on the phase boundary: Since quasi-static motions which involve
moving phase boundaries are generally dissipative (even in nominally elastic materials, see
Knowles, 1979). it is possible to define a notion of a driving traction on a phase boundary ;
the kinetic law relates the driving traction to the velocity of the moving phase boundary.

While the kinetic law governs the evolution of a phase boundary once it has been
initiated, a separate criterion is needed in order to signal the first appearance of the phase
boundary. The “initiation criterion™ used here is that a phase boundary will emerge when
the driving traction on it reaches a certain critical value. In the present theory, this is
equivalent to an initiation criterion based on a critical value of the dilatation.

It is found that, as the given displacement 6 increases monotonically during a quasi-
static motion, the hoop stress at the cavity first increases, then decreases discontinuously
as the phase boundary emerges from the cavity wall, next increases slowly (or, for certain
special kinetic laws, remains constant) as the phase boundary propagates outwards, and
finally commences to increase at the original rate once the body has been fully transformed.
In general, the response is rate-dependent and dissipative, though for two special kinetic
laws it is rate-independent ; in one of these special cases the response is dissipation-free,
while in the other it is “plasticity-like™.

2. CAVITY PROBLEM

Consider a hollow sphere of internal radius ¢ and external radius b. Suppose that the
outer surface of the sphere is subjected to a radial displacement § while its inner surface
remains free of traction. The resulting deformation of the sphere is assumed to be purely
radial with u(r) denoting the radial component of displacement; u is required to be
continuous on a < r < b, and for some s€ (a, b) it is to be twice continuously differentiable
on (u,s)+ (s, b). If ' is discontinuous at r = s, we refer to the circle r = s as an equilibrium
shock or phase boundary. The spherical components of strain associated with this defor-
mation are

£, = U(r), Euw = tpy = u(r)/r

} forrs#s (n

Ey = El)lb = Enp = 0
and the corresponding dilatation A(r) is
A(r) = u' (r)y+2u(r)/r forr #s. (2)

Suppose that the sphere is composed of an isotropic elastic material whose stress—
strain relation is

o = 2ue+ (d(A) —2uA/3)1; (3)

i (>0) is the shear modulus of the material and 6(4) is a constitutive function. Various
properties of this class of materials were examined in Part [. Here we simply note that the
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stress response of this material in simple shear is linear, while 6(A) denotes its stress response
Sfunction in pure dilatation. From (1)—(3), the components of stress in the sphere are

6, = 6(A(N) + (8u/3){u’ (r) —u(r)/r}
O = G40 = HAM) — QU W (N —u()/r}p forr#s. ®

O =04y =0,,=0

Equilibrium requires

do,,/dr+2(a,, —0w)/r = 0} ¢ &)
0,(5=) = 6, (s +). orr#s (6)
Equation (5), in view of (4), (2). leads to
d
—X(A(M) =0 forr#s )
dr
where X is defined by
Z(A) = 6(A)+4pA/3 for —0 < A < 0. (8)

(It can be readily shown from (8), (3) that £ may be interpreted as the stress response
function of the material in uni-axial deformation.) Integrating (7) leads to Z(A(r)) = ¢,
fora <r <s and Z(A(r)) = ¢, for s <r < b where ¢, and ¢, are constants. However,
as shown in Part T of this study (sce (33) of Abcyaratne and Jiang, 1989), displace-
ment and traction continuity across r = s requires Z(A(r)) to be continuous and so, (7)
in fact leads to

Z(A(r)) = ¢ forr#s. 9)

The cavity problem consists of finding a displacement field u(r) which obeys equations (2),
(9). the boundary conditions

u(b) =90 (10)
0,.(a) = 6(A(a)) + (4p/3) (' (@) —u(a)/a} = 0 (1
and the displacement continuity requirement u(s—) = u(s+).

3. DISPLACEMENT FIELDS

In this section we will solve the cavity problem for the particular class of materials
characterized by the dilatationa!l response function

BA for ~Ay <A< Ay
G(8) = BA+0,(A—Ay)/(A—A8y) forAd, <A<A, (12)
pA+or for A=A,

B, A... A, and o are material constants such that



1224 R. ABEYARATNE and G.-H. JIANG

A
o(a)
'y
0'. ______ .
i ~
(85,.9) L
I~
|
1
(Aﬂ.cr.') . :
;B Mo
_i N
Q 1 |\ ~ Am (AOD-VOS) A
A ~ L Rl
. .J_,p\v
3!._'_\_\ ¢
- 23 SO .

Fig. 1. Stress response curve in pure dilatation.

>0 A,>A,4>0, 6,<0
—fBAy €A, +0, <0 . (13)
(A, —A)(+4u/3) < —0ay.

A graph of the function ¢(A) is shown in Fig. 1. Requirement (13), implics that
d(—A4,) < d(4A,) < 0. The significance of (13); will be discussed shortly, The tri-lincar
dilatational response function (12) was used by Budiansky et al. (1983) for characterizing
the response of certain transforming ceramics. The only difference between (12), (13) and
the choice made by Budiansky er al. (1983) is that we take 6(4A,,) to be ncgative ; this feature
is needed in our analysis in order to allow for the occurrence of permanent deformations.
From (8). the uniaxial deformation response function I associated with (12) is

xA for —Ay, <A <A,
Z(A) =SaA+a (A=A (A, —Ay) forA, <ALA, (14a)
tA+o, for A=A,
where
a=f+4u/3. (14b)

The third condition in (13) ensures that £(A,,) > Z(A,,) so that X°(A) 1s ncgative on
(Ay.A,,). As shown in Part I (see discussion following (33) in Part I), this condition is
necessary and sufficient for the material to be able to sustain equilibrium deformations with
discontinuous strains. [In the terminology of Budiansky er al. (1983) when this condition
holds, the material can undergo a “*supercritical phase transformation™.] The graph of £(4A)
is shown in Fig. 2; the number X, = (£,,+X,,)/2. The figure has been drawn in the case
Z,, > 0, though this is not assumed in the analysis.

Finally, we introduce some additional notation which will simplify some of the for-
mulae that we will encounter in Sections 4 and 5. This notation pertains to certain special
points on the stress-strain curves shown in Figs | and 2. We emphasize that the constitutive
law (3), (12), involves only the five material constants g, f5, A,,. Ay, and a;; the quantitities
which follow can all be expressed solely in terms of these basic quantities :
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Fig. 2. Stress response curve in uni-axial deformation.

o, =fiA,+0r, Oy = O —0 (1 =fl2) A
oy = fidy, Ouy = oy +or(l—pfa)
0, = (0 +0,)2—0r(1=f[a)/2, o, =0, +0,(1-f) \ (15)
Y,=aA,+a;, Su=0aly,
A=A, +o/z, Ayy =47y —or/a
A=A +Ay) 2404/ 20, A=A +Ay)2—0, 20 ]

Observe that the points (A,1,6.1), (A.1,6,1) and (A, oy) lie on the first branch of the
stress—strain curve o = ¢(A) (hence the subscript 1), while the points (A, 0.,), (A,3,0,3)
and (A, 04,) lie on the third branch (hence the subscript 3). Moreover (A,,, o) is a local
maximum of this curve (hence the subscript M) while (A,,, 0,,) is a local minimum (hence
the subscript m1). Note also that the three straight lines which join (A, 04) 10 (Ays, 043),
(A.1.0,) to (A3, 0,3), and (A,,,,0,,,) to (A, 0,) each have the same slope —4u/3. The
points (A,,.0,,) and (A,;,0,;) correspond to so-called Maxwell-states; they have the
property that Z(A, ) = Z(A,,) = Z, = (Z,,+ Z4)/2.

We now return to the cavity problem and first consider the case in which the displace-
ment ficld s smooth. Suppose that the dilatation A(r) is such that —A,, < A(r) <A,
for a < r < b, so that all particles in the body are associated with the first branch of the
stress-strain curve (i.e. all particles are “untransformed™). By (2), (9), (14) it then follows
that

W(ry+2u(r)fr=cla fora<r<b. (16)

Integrating (16) and enforcing the boundary conditions (10), (11) leads to the following
expression for the displacement field.

u(r) = (0b%/q){xrla*+ (1 —K)/r*} fora<r<b an

where we have set

SAS 25:10-3
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k=432 (<), g=1+((ba’)-Dx (>1). (18)
On using (17) and (2). the requirement [A(r)! < A, yields [J] £ 8, where
Oy = (una")/‘(-”Kb:) (19)

Next, suppose that the dilatation is such that A{(r) = A, for a <r < b so that all
particles in the body are associated with the third branch of the stress~strain curve (i.e. all
particles are “transformed™). By (2). (9) and (14) it then follows that

W (r)+2u{r)fr=(c—op)j2 foragr<b. (20)

The displacement field may now be found by integrating (20) and enforcing the boundary
conditions (10), (11). This vields

u(r) = (0h%/q){kria* + (1 —k)/r’} —(or/32g){r—b'/r} fora<r<bh 2n

where x and ¢ were defined in (18). On using (21) and (2). the requirement A(r) = A,
yields 0 > d,, where

8,0 = (4B )/ (Brh?) + (0 ,a°) [ (dph?). (22)

Finally, we consider deformations that involve a phase boundary at r = 5. Suppose
that A{r) 2 A,, for a < r < sand that |A(r}] € Ay, for s < r < b, so that all particles within
the phase boundary are associated with the third branch of the stress-strain curve while the
particles outside the phase boundary are associated with the first branch of the stress—strain
curve (i.c. the body is in a “partially transformed conliguration™ with the particles within
the phase boundary transformed and those outside untransformed). From (2), (9) and (14)
it follows that

{(¢c—op)a foru<r<s

w(ry+2uln)/r = { (23)

cla fors<r<b.

Integrating {23) and enforcing the boundury conditions (10), (11) and the displacement
continuity condition u(s—) = u(s+) leads to

(03 q){krla* + (1 =K)/r?} = (6 ,r/32q)

((wh Y=Y =P Y+ (1 =$°r)) fora<gr<s
(0h*1q) (krla® + (1 —K)/r*} —(xo1r/32q)

(1=bYrY(t =5 a?) fors<r<b.

u(r) = (24)

The restrictions on A(r) that were assumed in deriving (24) can now be written by using
(24), (2) as

Su—ar{s?—a®)/(Bah) 2 8 = 6, +ar (b =) (3ab?) (25)

where d,, and 4,, are given by (19), (22).

While there are other cases to be considered (for example A(r) = A, for s <r < band
|A(N)] € Ay, for a < r < s) the three cases considered above are the most important ones.
Arguments similar to those used by Abeyaratne and Knowles (1987) can be used to show
that the remaining cases cannot occur in any quasi-static motion which commences from
a fully untransformed state, provided the motion conforms with the second law of
thermodynamics under isothermal conditions.
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Fig. 3. Parameter sets E,. £,, E,, in (J.s)-plane.

In order to summarize the preceding results we consider the following sets E,, E; and
E,, of the (4, s)-plane:

E = {0,910 <oy, s=a} (26)

Ev={(0.5)]020,. s=b 27N

Ey = {(0.5) | du—0ar(s'=a")/Bab®) 2 6 2 0, +0a,(h’ —s)/(32h?), a<s<bl. (28)
These domains are skctehed in Fig. 3 where 8, is defined by

Sy = —ap(b*—a’)/(Gab?). (29)

While the figure has been drawn for the case 8, > 34, our analysis is not restricted to this
case. It follows from the analysis surrounding (16)-(19) that if (J,s) is a point in £, then
u(r) as given by (17) is a solution to the cavity problem. Similarly if (J, s) is respectively in
E; or E;,, a solution to the cavity problem is given by (21) or (24). It is now clear that
the cavity problem, as formulated, suffers from a massive failure of uniqueness. Observe
from Fig. 3, that if the prescribed value of the displacement ¢ is sufficiently small
(—0y €8 <6,,—9d,), the problem has a unique solution (and that it coincides with a “fully
untransformed” configuration). Similarly if é is sufficiently large (§ > 8,,+ ), the problem
again has a unique solution (this time corresponding to a “fully transformed ™ con-
figuration). On the other hand when the given value of § lies in the intermediate range
Om—0r < & < 3y + 37, the problem has an infinite number of solutions (since the value of
s is essentially arbitrary).

4. HOOP STRESS AT THE CAVITY
Our primary interest in this paper is to examine the relation between the hoop stress
at the cavity wall 6. = o49{a) and the applied displaccment d. In the case of an untransformed
configuration, one finds from (4),, (12) and (i7) that o, is given by
o, = (304/204)9. (30)
Similarly for a fully transformed configuration, (4),, (12) and (21) give

g, = (30’5,/2(5”)5'{’3'\'0’1")}/2(]03 (31)

while for a partially transformed configuration
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by (4),, (12) and (24).
The regions £, Ey and E5, in the (3, s)-plane are carried by the respective mappings
(30), (31) and (32) onto the following domains F,, F; and Fy, of the (3.6,)-planc:

Fy = {(3.0) 0. =6u(1-=K)h*3ja’q, 5] < Sy} 33

Fy={(d,0.) 0. =6u(l —x)b*3j’q+ (Bxo b’ [2qa*), 523, (34)

Fy, = {8, 0|0, —3K64/2 < 36,4,8/20y < 6.~3nob*[2qa®, 30,/2 €0, <30y,/2}. (35)
Figure 4 displays these regions; F, and F, are parallel straight lines, while £, is a paral-
lelogram. The lines s = constant in £;, arc mapped onto a family of parallel lines in F,,.
Observe that part of £, coincides with onc of the boundaries of F, but that this is not so
of F,. The quantities 8,, J,,, 0, are given by (19), (22) and (29), while the numbers g,,, 7,1,

G a3 0,1 and g, are given by (15). While Fig. 4 has been drawn for the case 6,; > 0, this is
not assumed in the analysis.

5. KINETICS
In order to complete the analysis, we must account for the kinetics of the trans-

+ -+
formation. Let A, A, I, X, denote

A=AG+), A=AG—), I=%=3(A)=E5(@) (36)

Then, the driving traction (the driving force per unit arca) on the phase boundary is (see
equation (48) of Part I)

i ..
f= J I(A) dA —Z(A)(A—-A). 37
A

On using the constitutive law (14), this simplifies to
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f=(=01/0){E—(Ew+E.)/2) (38)

in the case of a partially transformed configuration characterized by (24). Here £,, and X,
are as defined previously in (15) and have the meanings shown in Fig. 2. Note that f vanishes

when Z = I where

L, =(Zy+Zn)/2; 39

I, is called the Maxwell stress and has the property that the two hatched areas in Fig. 2

are equal. Since £, < £ £ X, the greatest and least values of the driving traction (38) are
Ju = —or(Zy—L,)/2a (>0) (40)
S =07(Zy—L,)20 (<0) (41)

respectively.

Now consider a quasi-static motion of the body on a time interval [t,,7,]. The lack of
uniquencss observed previously suggests that the theory, as formulated, suffers from a
constitutive deficiency. A kinetic law is a supplementary constitutive relation: it applies to
particles located on the phase boundary and relates the driving traction f (and possibly
other local quantities as well) to the velocity s of the phase boundary. An example of such
a kinetic law is

() =V({{) forrpse<y, (42)

where Vois a constitutive function; V is defined and suitably smooth on the interval
1 foSur]- In order to be consistent with the second law of thermodynamics under isothermal
conditions, ¥ must obey (sce (52) of Part [)

ViNf=0 forf, <f< fyu. (43)

Returning to the cavity problem, suppose that at every instant ¢ during the time interval
{to, 1,] the body takes on a partially transformed configuration ; the displacement field in
the sphere is then given by (24) with s and 9 replaced by s(¢) and §(¢). In this event, we find
from (24), (2), (14) and (36) that

+

T = 3adb’k/qa’ + (ko /g ) (s ]a® ~ 1). (44)

Substituting (44) into (38) expresses the driving traction in terms of é and 5. Combining
the resulting cquation with (42) yields the following first order differential equation for s(z) :

§(1) = V((~or/0)[3ad() b’k/qa’ + (ko r/q)(s(0)/a’ = 1) = L,]) 45)

for 15 € 1 € 1,. Given the displacement history 8(f) for 7, <1 < 1, and the initial position
of the phase boundary s(z,), (45) can, in principle. be solved uniquely for s(¢). The
displacement field during the quasi-static motion is now given (uniquely) by substituting
this s(t) and 4(f) into (24). The corresponding history of the hoop stress at the cavity is
likewise given by (32). We now consider three specific examples of kinetic laws.

5.1. History-independent response
Let ¢ be the function which is inverse to the kinetic function V; the kinetic law (42)
can then be written in the alternate form
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Fig. 5. Dissipation-free response.
f‘(f) = {{J(A(:’)) f‘()l‘ fy LI 1. (46)
Constder the particular kinetic law characterized by
o) =0 for —w <s< @ 47

which is sketched in Fig. 5 according to this kinetic law the driving traction f on the phase
boundary must vanish at all instants during a quasi-static motion.

First consider a motion which, at every instant in [ty t,], is associated with a partially
transformed configuration. Equations (46), (47), (38), (39) and (44) then lead to the
following relation between 6(1) and s(1) :

3xd()b wlga’ + (ko jg )P (e’ - 1) = Z, fort, <1<, (48)
Eliminating s between (48) and (32), and then using (15) gives
6.(f) =30,,/2 fort, <1<, (49)

According to (49), during the quasi-static motion, the point (3(¢), 6.(r)) moves along the
horizontal line BC in Fig. 5. Recall that while the figure has been drawn for the case a,; > 0,
this need not be.

Suppose next that the prescribed displacement d(r) is increased monotonically (and
continuously) from zero, and that at the initial instant the body is in a fully untransformed
configuration. The resulting history of the hoop stress is then as shown in Fig. 5: as the
point (5(1), o.(¢)) moves along OA (the sphere remains untransformed and) o, increases.
When (8(1), 0.(¢)) reaches point A, the particle at the inner wall r = a is at a “Maxwell
state™ in the sense that the dilatation A(a) = A, (so that if a phase boundary was initiated
at r = a at this instant, the driving traction on it would vanish). If we assume that a phase
boundary is in fact initiated at this instant at r = a, (3(1), 0.(f)) now moves from A to B.
The hoop stress thus decreases discontinuously from the value 30,,/2 to 30,,/2. As &(2)
continues to increase, the motion is now governed by the kinetic law and so, during this
stage. (8(2),0.(1)) moves along BC, o. remains constant, and the phase boundary moves
outwards. Eventually, (5(1). o.(r)) reaches point C (at which time the phase boundary has
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arrived at the outer wall r = b) and then commences to move along CO,. The hoop stress
then begins to increase once more.

If 8(¢) is decreased monotonically from its value at Os, (6(1). 5.(1)) follows the path
0«CBAO. The response is thus reversible, history-independent and dissipation-free.

5.2, History-dependent, rate-independent response
As a sccond example constder the following choice for the inverse kinetic function ¢
in {(46),

. Su fors>0 50
o) = fn fors<0 9

which is sketched in Fig. 6; here f,, and f,, are the maximum and minimum possible values
of the driving traction as given by (40), (41). According to this kinetic relation, in order
for the phuse boundary to move outwards the driving traction f must take on its largest
possible value fy,, while if it is to move inwards /' must have its smallest possible value f,,;
if ftakes on any value between f,, und £, the phase boundary must remain stationary {even
though the other ficld quantities might be varying). Thus (46}, (50), together with (38),
(40), (41), (44) and (15) yield

>0 if ¢.=30643/2 and >0
${<0 if 6,=30,/2 and 8<0 sh

=0 otherwise.

As the following two examples show, the response of the body to various prescribed
displacement histories §(f) may now be determined using (51).

Consider first a monotonically increasing displacement history 8(¢) with (z,) = 0. Sup-
pose further that the initial configuration is a fully untransformed one. The associated
variation of the hoop stress is then as shown in Fig. 6: as ((¢), 6.{f)} moves along OVP,
a. increases. When (6(1), o.(1)) reaches point P, the dilatation at the particle at the inner
wall r = g is Ay (and thus, if a phase boundary is initiated at r = a at this instant, the
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s=V(f)

Fig. 7. Response according to kinetic relation shown in insct.

driving traction on it would be fy, ). If we assume that a phase boundary is in fact initiated
at r = g at this instant, (1), 0.(r)) gocs from P to Q and the cavity hoop stress decreases
discontinuously from the value 30,,/2 to 3o4,/2. The kinetic law (51) governs the next
stage of the motion and, accordingly, (3(¢), 0.(1)) proceeds along QRS, the hoop stress
remains constant, and the phase boundary propagates outwards. Eventually (6(2),0.(1))
reaches the point § (at which time the entire sphere is completely transformed) and then
commences to move up SO ; o, thus begins (o increase again. If 5(¢) is decreased from its
value at O the path followed on the (3, a,)-planc is, according to (51), Q«STUVO.

Suppose next that in the preceding example the displacement 6(1) was only increased
untit (3(1), a.(1)) reached point R, and that thercafter it is monotonically decreased tor a
short interval of time. According to (51), s(¢) must remain constant during this period and
therefore (5(1), 6.(r)) moves down along the line RW. (RW s paralle! to QU ; recall the
discussion following (35)). If 8(¢) is increased again from its value at W, (3(1), 0.(1)) follows
the path WRSO., so that the phase boundary continues to remain stationary for a while
(WR) but then resumes its outward motion.

The response of the sphere according to the kinetic relation (50) is thus seen to be
“plasticity-like”. Note that quasi-static motions of the sphere are dissipative at all instants
during which the phase boundary is in motion (since then f§ > 0) but non-dissipative when
the phase boundary is stationary. This particular kinetic law is equivalent to the “flow-
rule” used by Budiansky er al. (1983).

5.3. History-dependent, rate-dependent response

As a final example, consider the kinetic function V(f) shown in Fig. 7: V increases
monotonically on (f,.fy). V(0) =0, V{f) =0 as f—f,, and V() > —w as f—=f,.
Supposc that d(r) = i¢ where 2 > 0 is the (constant) loading rate. During the resulting
motion, the point (5(r), o.(r)) moves along the curve QABMNOu shown schematically in
Fig. 7. The sphere initially remains untransformed (OZA). When A(a) = A, (point A) we
assume that a phase boundary is initiated at r = a; the driving traction on this phase
boundary at the instant of initiation is zero. As in all cases, the kinetic law is now operative
and governs the evolution of the phase boundary. The equation of the curve BMN is found
by solving the differential equation (45) with 6(¢) = At subject to the initial condition s = a.
It is clear that, in general, different loading rates A will give rise to different curves BMN.
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When the rate at which ¥V (f) — £ = is sufficiently large, one can show that the curve BMN
does not intersect the vpper horizontal boundary of the parallelogram F;;. (If V" does not
increase fast enough. the path will intersect the upper boundary ; this means that the sphere
cannot be deformed beyond this point of intersection, at that same rate of loading.)
Eventually, the phase boundary reaches the outer wall (point N). Note that during this
motion, the cavity hoop stress g, first increases, then decreases discontinuously as the phase
transformation is initiated. then increases slowlyt (as the phase boundary propagates). and
finally (once the entire body has been transformed) increases at the same rate as during the
initial stage. Unloading follows the path O.CXYZO.

As a second example of a loading history, suppose that the initial configuration of the
body is that associated with any point, say M, in Fy,. Suppose further, that the displacement
d(1) ts held constant thereafter. Since the driving traction fon the phase boundary does not
vanish in general, the phase boundary will move according to the kinetic law. The motion
of the body may be determined by first finding s(¢) by solving the differential equation (45)
with d(r) = constant, and then substituting the result into (24). The path followed in the
(d.0,.)-plane is the vertical line through M. The phase boundary eventually comes to rest
when the driving traction becomes zero which happens when (3{1), o.(1)) reaches the line
BC.
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